Confidential

The effect of sex category on the eating quality of lamb loin chops.

Report

28th March 2007

G R Nute, A.Baker & S.I.Hughes

Sensory & Consumer Group Division of Farm Animal Science University of Bristol Langford Nr Bristol BS40 5DU

> Tel: 0117 928 9305 Fax 0117 928 9324

This work has been carried out in accordance with the highest academic standards, and best endeavours have been made to achieve the degree of reliability and accuracy appropriate to work of this kind.

However, the University does not have any control over the use to which these results of the work may be put by the Company and the Company will, therefore, be deemed to have satisfied itself in every respect as to the suitability and fitness of the work for any particular purpose or application.

In no circumstances will the University, its servants or agents accept any liability, however caused, arising from any error or inaccuracy in any opinion, advice or report arising from this work nor for any damage, loss, expenses or claim.

Summary

The ninety lambs in this trial came from six different farms with different feeding and housing strategies. Each farm produced female lambs plus either male lambs or castrated lambs.

The major differences are related to different degrees of tenderness. The majority of grilled lamb loin chops were considered tender. Five of the six groups of panels were very consistent in rating lamb from female animals as being more tender than either males or castrates. Four of the groups of panels rated lamb from males as less tender, 1 group of males from farm 4 were rated as more tender than other lambs.

The pooled data for tenderness showed that female lambs were more tender than castrates which in turn were more tender than males, however all the mean values were within 2 categories of tenderness.

Only one group of lambs from farm 1 were considered more juicy than castrates and males. The pooled data did not reveal differences in juiciness between sex types.

There were few differences in the odour of the fat, only in one group of lambs were there significant differences and this favoured the castrates which had less abnormal odour than either females or males although the absolute values were in the categories "very weak to moderately weak"

Surprisingly, in view of the different diets used, there were no differences in lamb flavour across the groups although in two groups abnormal flavour was significantly different where male and castrate lambs from farms 3 & 6 respectively had higher abnormal flavour than female lambs from farm 3. Similarly abnormal flavour was higher in castrates from farm 5 whilst males and females from farm 4 did not differ significantly. The overall level of abnormal flavour was in the category range of "very weak to slightly weak".

The hedonic data for flavour liking and overall liking showed that meat from female lambs was preferred over that of male and castrate lambs. There was no significant difference between male and castrate lambs in flavour liking or overall liking.

The hedonic data should be treated with caution as it derived from a small group of assessors and may not be representative of consumer acceptability; it merely serves as an indication of trends in flavour and overall liking.

Objective

Compare the eating quality of male, castrate and female lambs and compare either castrate or male lambs against female lambs within farms.

Materials & Methods

Farms

Frozen vacuum packed paired lamb loins were received at The Division of Farm Animal Science, Sensory Group.

On arrival, all samples were checked for the integrity of the vacuum pack and all found to be intact.

The lamb loin samples came from six different farms (coded 1 to 6) each of which were asked to supply 15 lambs comprising five females and either ten castrates or male lambs. Two farms did not follow the protocol exactly, farm 5 supplied 4 females and 11 castrates and farm 6 supplied six females and 9 castrates. This resulted in a change within some individual panels to accommodate this variation, but over the six farms the totals of males, castrates and females were balanced.

Individual farm details are given in Appendix 1.

Sensory analysis

The day before assessment loins, were removed from the -20° C room and initially thawed at room temperature and then stored overnight in a refrigerator set at +1 $^{\circ}$ C.

The allocation of lambs was based on ensuring that at each panel three samples were present, comprising male, castrate and female lambs, where two of the lamb samples were supplied from the same farm. As far as possible, lambs within a panel had similar carcass grades. The panel allocations are shown in Appendix 2, which identifies individual lambs and farms. On the morning of sensory analysis, loin samples were de-boned and cut into ten 2 cm steaks. Loin samples were cooked (turning every 3 minutes) under a grill, until the internal temperature of each sample reached 75 ° C as measured by a thermocouple. The samples were then removed from the grill and placed in an incubator prior to sampling for the panel. Samples were prepared such that the fat and connective tissue were removed and fat and lean were served separately. Samples were then wrapped in pre-coded aluminium foil and placed in hot blocks in each sensory booth.

Ten assessors, who had been screened according to British Standards Institute methods and who had also received special training in the assessment of meat took part in the tests. All assessments were completed under red light.

Assessors were asked to rate 8 point category scales for: lamb odour of the fat, abnormal odour of the fat and assessment of the lean meat for texture, juiciness, lamb flavour intensity, abnormal lamb flavour intensity and also two hedonic scales for flavour liking and overall liking. (Appendix 3) A total of 30 panels were convened and were attended by the same assessors throughout.

Statistical analysis.

Analysis of variance using sex and assessors as factors were used for each block of 5 panels where either males versus females or castrates versus females were compared within farm. To make up the triad for each panel a third sample came from another farm. A pooled analysis comparing the three sex types were completed across all farms. Individual mean values for each lamb are given Appendix 4.

Results.

Within farm sex comparisons

Farm 1, males versus females, Table 1.

There were no significant differences in lamb odour of the fat or abnormal odour of the fat. On eating meat from females lambs was significantly (p<0.001) were more tender and significantly (p<0.01) more juicy than males. There were no significant differences in lamb flavour or abnormal flavours. The hedonic terms of flavour liking and overall liking did not reveal differences between meat from female or male lambs.

Table 1. Influence of sex type on the eating quality of grilled lamb loin.

Values are the means derived from analysis of variance with Type and Assessor as factors with 5 replications.

8 point category scale used

Farm 1	Ty	pe				
	Male	Female	vr	Probability	sig	lsd
Attributes						
Fat						
Lamb odour	4.92	5.04	0.31	0.5806 ns	3	!
Abnormal odour	1.92	1.86	0.07	0.7908 ns	3	!
Lean						
Texture	5.18	6.16	16.28	0.0001***	*	0.48
Juiciness	5.12	5.60	9.52	0.0028 **	:	0.31
Lamb Flavour	4.32	4.56	1.25	0.2675 ns	S	!
Abnormal Flavour	3.44	3.46	0	0.9440 ns	3	!
Hedonic						
Flavour liking	4.24	4.58	1.63	0.2056 ns	3	!
Overall liking	4.24	4.70	2.68	0.1056 ns	3	!

vr, variance ratio

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

Farm 2, Female versus castrate, Table 2.

There was no significant difference in lamb odour of the fat, however, abnormal odour of the fat was significantly higher (p<0.01) in the fat from female lambs.

Meat from female lambs was significantly (p<0.05) more tender than meat from castrated lamb. There were no significant differences in juiciness, lamb flavour, or abnormal flavour. Neither were there differences in flavour liking or overall liking.

Table 2. Influence of sex type on the eating quality of grilled lamb loin. Values are the means derived from analysis of variance with Type and Assessor as factors with 5 replications.

8 point category scale used	_	-				
Farm 2	Тур			D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1
	Female	Castrate	vr	Probability	sig	lsd
Attributes						
Fat						
Lamb odour	4.66	4.66	0	>0.9999	ns	!
Abnormal odour	2.36	1.80	7.61	0.0072	**	0.40
Lean						
Texture	5.62	5.04	4.08	0.0467	*	0.57
Juiciness	4.98	5.00	0.01	0.9177	ns	!
Lamb Flavour	4.48	4.58	0.18	0.6721	ns	!
Abnormal Flavour	3.54	3.66	0.16	0.6912	ns	!
Hedonic						
Flavour liking	4.44	4.42	0.01	0.9417	ns	!
Overall liking	4.44	4.24	0.53	0.4697	ns	!

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

Farm 3, male versus female, Table 3.

There were no significant differences in the odour of fat from either male or female lambs. Female lambs were significantly (p<0.001) more tender than meat from male lambs but did not differ in juiciness or lamb flavour. Abnormal flavour was significantly (p<0.001) higher in meat from male lambs. Flavour liking and overall liking of lamb from females was significantly higher at p<0.01 and p<0.001 respectively when compared with meat from male lambs.

Table 3. Influence of sex type on the eating quality of grilled lamb loin. Values are the means derived from analysis of variance with Type and Assessor as factors with 5 replications.

8 point category scale used Farm 3	Tyj	ne				
Turin 5	Male	Female	vr	Probabilit	y sig	lsd
Attributes						
Fat						
Lamb odour	4.16	4.54	2.69	0.1047	ns	!
Abnormal odour	2.40	2.16	1.05	0.3083	ns	!
Lean						
Texture	4.84	6.16	34.57	< 0.0001	***	0.45
Juiciness	4.76	5.06	2.05	0.1566	ns	!
Lamb Flavour	4.30	4.72	3.59	0.0619	ns	!
Abnormal Flavour	3.36	2.48	11.99	0.0009	***	0.51
Hedonic						
Flavour liking	4.40	5.24	11.20	0.0012	**	0.50
Overall liking	4.34	5.32	13.92	0.0004	***	0.52

vr variance ratio

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

There were no significant differences in lamb odour or abnormal odour of the fat. Meat from female lambs was significantly (p<0.01) more tender than meat from male lambs although both meats were rated as tender.

There were no significant differences in juiciness, lamb flavour, abnormal flavour or in flavour liking and overall liking between meat from male or female lambs.

Table 4. Influence of sex type on the eating quality of grilled lamb loin. Values are the means derived from analysis of variance with Type and Assessor as factors with 5 replications.

		with 3	replicatio	ns.		
8 point category sca	ale used					
Farm 4		Тур	e			
	Male	Female	vr	Probability	sig	lsd
				-		
Attributes						
Fat						
Lamb odour	4.30	4.38	0.17	0.6769 1	ıs	!
Abnormal odour	1.96	1.98	0.01	0.9306 1	18	!
Lean						
	5.00	5.60	0.10	0.00543	•	0.42
Texture	5.06	5.68	8.18	0.0054 *	•	0.43
Juiciness	5.22	5.04	1.51	0.2221 1	18	!
Julemess	3.22	3.01	1.51	0.2221	13	•
Lamb Flavour	4.78	4.68	0.18	0.6743 ı	ıs	!
Abnormal Flavour	2.96	3.10	0.34	0.5633 1	ıs	!
Hedonic						
Flavour liking	4.70	4.88	0.50	0.4829 1	ıs	!
Overall liking	4.62	4.88	0.94	0.3362 1	ıs	!

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

Farm 5, female versus castrate, Table 5.

Four female lambs were supplied from this farm so consequently comparisons with castrates are based on four comparisons.

There were no significant differences in lamb odour or abnormal odour of the fat. On eating the lean, meat from female lambs was significantly (p<0.01) more tender than meat from castrates. There were no significant differences in juiciness, lamb flavour, abnormal flavour or the hedonic terms of flavour liking and overall liking.

Table 5. Influence of type on the eating quality of grilled lamb loin. Values are the means derived from analysis of variance with Type and Assessor as factors with 4 replications.

8 point category scale used Farm 5	Тур	ne.				
	Female	Castrate	vr	Probability	sig	lsd
Attributes Fat						
Lamb odour	4.67	4.70	0.02	0.8869	ns	!
Abnormal odour	1.85	1.70	0.69	0.4087	ns	!
Lean Texture	5.83	4.97	8.10	0.0060	**	0.60
Juiciness	4.92	4.63	1.44	0.2349	ns	!
Lamb Flavour	4.38	3.95	3.04	0.0863	ns	!
Abnormal Flavour	3.52	3.77	0.42	0.5193	ns	!
Hedonic Flavour liking	4.47	4.05	1.95	0.1679	ns	!
Overall liking	4.45	3.95	2.62	0.1108	ns	!

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

There were no significant differences in lamb odour or abnormal odour of the fat from female or castrate lambs.

Texture, juiciness, lamb flavour and abnormal flavour had similar mean values and did not differ significantly.

There were no significant differences in flavour liking or overall liking in this group of lambs.

Table 6. Influence of type on the eating quality of grilled lamb loin.

Values are the means derived from analysis of variance with Type and Assessor as factors with 5 replications.

8 point category scale used

Farm 6	Typ	e				
	Female	Castrate	vr	Probability	sig	lsd
Attributes						
Fat Lamb odour	4.12	4.34	0.87	0.3545 1	ns	!
Abnormal odour	2.10	1.84	1.50	0.2239 1	ns	!
Lean Texture	4.26	4.30	0.02	0.8899 1	ns	!
Juiciness	4.80	4.84	0.07	0.7977 1	ns	!
Lamb Flavour	4.38	4.36	0.01	0.9294 1	ns	!
Abnormal Flavour	3.02	3.16	0.27	0.6072 1	ns	!
Hedonic Flavour liking	4.36	4.28	0.11	0.7371 1	ns	!
Overall liking	4.04	4.16	0.24	0.6244 1	ns	!

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

Across farms sex type comparisons.

Farm 1 male and female plus farm 2 castrates. Table 7.

Five panels compared the 3 sex types using loins from farms 1 & 2.

There were no significant differences in lamb odour or abnormal odour of the fat.

Meat from female lambs was significantly (p<0.001) more tender than meat from male or castrate lamb. There were no significant differences between male and castrate lamb. Meat from female lambs was significantly (p<0.01) more juicy than either male or castrate lamb. There were no significant differences in juiciness between male and castrate lamb.

There were no significant differences in lamb flavour, abnormal lamb flavour or the hedonic terms flavour liking and overall liking.

Table 7. Influence of sex type on the eating quality of grilled lamb loin.

Values are the means derived from analysis of variance with Type and Assessor as factors with 5 replications.

8 point category scale used

8 point category sca	de used						
Panels 1 to 5	Male Farm1	Type Female Farm 1	Castrate Farm 2	vr Pı	robability	sig	lsd
Attributes Fat	Tunni	1 41111 1	1 41111 2				
Lamb odour	4.92	5.04	4.92	0.22	0.8027	ns	!
Abnormal odour	1.92	1.86	1.92	0.05	0.9525	ns	!
Lean Texture	5.18 ^b	6.16 ^a	5.56 ^b	7.81	0.0006	***	0.50
Juiciness	5.12 ^b	5.60 ^a	5.18 ^b	5.40	0.0057	**	0.32
Lamb Flavour	4.32	4.56	4.74	1.94	0.1488	ns	!
Abnormal Flavour	3.44	3.46	3.50	0.02	0.9783	ns	!
Hedonic Flavour liking	4.24	4.58	4.52	0.91	0.4047	ns	!
Overall liking	4.24	4.70	4.48	1.38	0.2547	ns	!

vr variance ratio, * significant at 5%, ** significant at 1%, *** significant at 0.1%! least significance test post hoc not computed

Farm 1 male plus farm 2 female and castrates. Table 8.

There was no significant difference in lamb odour of the fat between the three sex types, however, there were significant differences in abnormal odour where the abnormal odour of fat from female lambs and male lambs was significantly (p<0.05) higher than from castrate lambs, although the values were within the "very weak to moderately weak" categories. Meat from female lambs were significantly (p<0.001) more tender than meat from castrates or male lambs and castrates were significantly more tender than meat from male lambs. There were no significant differences between the sex types for the remaining sensory attributes, neither were there differences in flavour liking or overall liking.

Table 8. Influence of sex type on the eating quality of grilled lamb loin.

Values are the means derived from analysis of variance with Type and Assessor as factors with 5 replications.

8 point category sca	ale used		-				
Panels 6 to 10		Type					
	Male	Female	Castrate	vr	Probability	sig	lsd
	Farm1	Farm 2	Farm 2				
Attributes							
Fat							
Lamb odour	4.26	4.66	4.66	2.31	0.1034	ns	!
			h				
Abnormal odour	2.42^{a}	2.36^{a}	1.80 ^b	3.90	0.0229	*	0.48
T							
Lean	4 22°	5 (Qa	5.04 ^b	10.72	-0.0001	***	0.56
Texture	4.32°	5.62 ^a	5.04	10.73	< 0.0001	****	0.56
Juiciness	4.86	4.98	5.00	0.27	0.7635	ns	,
Juiciness	4.00	4.70	3.00	0.27	0.7033	113	•
Lamb Flavour	4.62	4.48	4.58	0.21	0.8120	ns	!
Abnormal Flavour	3.36	3.54	3.66	0.59	0.5533	ns	!
Hedonic							
Flavour liking	4.16	4.44	4.42	0.79	0.4567	ns	!
	2.05		4.0.4	2.00	0.4050		
Overall liking	3.92	4.44	4.24	2.09	0.1278	ns	!

vr variance ratio

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

These comparisons were based on four panels since there were only four females supplied from Farm 5. Therefore panel 15 is not included since it contained two castrate samples. There were no significant differences observed for lamb odour or abnormal odour of the fat. Meat from female lambs were significantly (p<0.001) more tender than meat from castrates or male lambs and castrates were significantly more tender than meat from male lambs. There were no significant differences between the sex types for the remaining sensory attributes, neither were there differences in flavour liking or overall liking.

Table 9. Influence of sex type on the eating quality of grilled lamb loin.

Values are the means derived from analysis of variance with Type and Assessor as factors with 4 replications.

8 point category sca	ale used							
Panels 11 to 14		Type						
	Male	Female	Castrate	vr	Probabilit	y sig	lsd	
	Farm3	Farm 5	Farm 5					
Attributes								
Fat								
Lamb odour	4.85	4.67	4.70	0.47	0.6250	ns	!	
Abnormal odour	1.93	1.85	1.70	0.76	0.4711	ns	!	
_								
Lean		9	h					
Texture	4.28°	5.83^{a}	4.97 ^b	13.33	< 0.0001	***	0.60	
Iniciaco	175	4.02	4.62	0.00	0.4100	***	,	
Juiciness	4.75	4.92	4.63	0.90	0.4109	ns	!	
Lamb Flavour	4.05	4.38	3.95	2.06	0.1333	ns	,	
Lamo I lavour	7.03	7.50	3.73	2.00	0.1333	113	•	
Abnormal Flavour	3.58	3.52	3.77	0.29	0.7495	ns	!	
				2				
Hedonic								
Flavour liking	4.05	4.47	4.05	1.53	0.2211	ns	!	
_								
Overall liking	3.83	4.45	3.95	2.59	0.0809	ns	!	

vr variance ratio

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

These comparisons were based on four panels since there were only 9 castrates supplied from Farm 6. Five were required for the female versus castrate comparison within farm 6 panels described later and therefore only four were available for these sex type comparisons. Panel twenty, which contained two female samples is not included in this group of panels.

There were no significant differences in lamb odour or abnormal odour of the fat.

The tenderness of meat from female lambs did not differ significantly from castrate lambs although both of these differed significantly (p<0.01) from male lambs. There were no significant differences in juiciness or lamb flavour between the sex types. However, male and castrate lamb meat was significantly (p<0.01) higher in abnormal flavour than meat from females.

This was reflected in the hedonic terms flavour liking and overall liking where meat from female lambs were significantly (p<0.01) preferred over male and castrate meat.

Table 10. Influence of type on the eating quality of grilled lamb loin. Values are the means derived from analysis of variance with Type and Assessor as factors with 4 replications.

8 point category sca	le used						
Panels 16 to 19	Male Farm3	Type Female Farm 3	Castrate Farm 6	vr	Probability sig		lsd
Attributes							
Fat Lamb odour	4.30	4.50	4.35	0.36	0.6979	ns	!
Abnormal odour	2.38	2.27	2.20	0.21	0.8075	ns	!
Lean Texture	4.88 ^b	5.97 ^a	5.58 ^a	7.40	0.0011	**	0.58
Juiciness	4.83	5.03	4.88	0.46	0.6326	ns	!
Lamb Flavour	4.15	4.70	4.22	3.00	0.0548	ns	!
Abnormal Flavour	3.55 ^a	2.50^{b}	3.52 ^a	7.29	0.0012	**	0.62
Hedonic Flavour liking	4.33 ^b	5.17 ^a	4.25 ^b	6.49	0.0023	**	0.57
Overall liking	4.28 ^b	5.20 ^a	4.22 ^b	6.96	0.0016	**	0.58

vr variance ratio, * significant at 5%, ** significant at 1%, *** significant at 0.1%! least significance test post hoc not computed.

Farm 4 male and female plus farm 5 castrate. Table 11.

There were no significant differences observed for lamb odour or abnormal odour of the fat.

Meat from female lambs were significantly (p<0.05) more tender than meat from male lambs, but did not differ significantly from castrate lambs. There were no significant differences in juiciness or lamb flavour, but abnormal flavour was significantly (p<0.001) higher in castrates than in female or male lambs which did not differ significantly.

In terms of flavour liking, meat from male and female lambs was significantly (p<0.001) preferred over meat from castrates and this was reflected in overall liking.

Table 11. Influence of sex type on the eating quality of grilled lamb loin.

Values are the means derived from analysis of variance with Type and Assessor as factors with 5 replications.

8 point category sca	ale used						
Panels 21 to 25	Male	Type Female	Castrate	vr	Probability sig		lsd
Attributes	Farm4	Farm 4	Farm 5				
Fat							
Lamb odour	4.30	4.38	4.28	0.15	0.8631	ns	!
Abnormal odour	1.96	1.98	1.82	0.32	0.7253	ns	!
Lean							
Texture	5.06^{b}	5.68 ^a	5.56 ^a	4.21	0.0170	*	0.45
Juiciness	5.22	5.04	4.94	1.84	0.1630	ns	!
Lamb Flavour	4.78	4.68	4.32	2.37	0.0982	ns	!
Abnormal Flavour	2.96 ^b	3.10^{b}	4.06 ^a	10.20	<0.0001	***	0.52
Hedonic							
Flavour liking	4.70 ^a	4.88 ^a	3.80^{b}	10.78	< 0.0001	***	0.49
Overall liking	4.62 ^a	4.88 ^a	3.84^{b}	8.88	0.0003	***	0.51

vr variance ratio

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

Farm 4 male, farm 6 female and castrate. Table 12.

There were no significant differences in lamb odour or abnormal odour of the fat.

Meat from male lambs were significantly (p<0.05) more tender than meat from either female or castrates which did not differ significantly.

There were no significant differences in juiciness, lamb flavour, abnormal flavour or the two hedonic terms flavour liking and overall liking.

Table 12. Influence of type on the eating quality of grilled lamb loin. Values are the means derived from analysis of variance with Type and Assessor as factors with 5 replications.

8 point category sca	ale used						
Panels 26 to 30	Male	Type Female	Castrate	vr	Probability sig		lsd
Attributes	Farm4	Farm 6	Farm 6				
Fat							
Lamb odour	4.26	4.12	4.34	0.44	0.6446	ns	!
Abnormal odour	2.22	2.10	1.84	1.44	0.2401	ns	!
Lean							
Texture	4.88^{a}	4.26^{b}	4.30^{b}	3.19	0.0447	*	0.54
Juiciness	5.08	4.80	4.84	1.92	0.1508	ns	!
Lamb Flavour	4.74	4.38	4.36	1.77	0.1743	ns	!
Abnormal Flavour	2.98	3.02	3.16	0.25	0.7799	ns	!
Hedonic Flavour liking	4.58	4.36	4.28	0.88	0.4171	ns	!
Overall liking	4.40	4.04	4.16	1.16	0.3166	ns	!

vr variance ratio

^{*} significant at 5 %

^{**} significant at 1 %

^{***} significant at 0.1 %

[!] least significance test post hoc not computed

Pooled data, Table 13.

An orthogonal set of twenty-eight panels (84 samples) were pooled across farms to compare males, females and castrates. Means for the non-orthogonal panels (6 samples) have been included in the individual values data set.

There were no significant differences in lamb odour of the fat with values falling within the "slightly weak "category. There were significant differences observed in abnormal odour of the fat where males and castrates had significantly (p<0.05) higher abnormal odour in the fat. However, the mean values all fall within the "very weak" categories.

In terms of tenderness, meat from female lambs was significantly (p<0.001) more tender than meat from castrates which in turn were significantly more tender than meat from male lambs. There were no significant differences in juiciness or lamb flavour, although abnormal lamb flavour was significantly higher (p<0.01) in castrates than either male or female lambs, which did not differ significantly.

In terms of flavour liking and overall liking, meat from female lambs was significantly (p<0.001) preferred over male and castrate meat, which did not differ significantly.

Table 13. Influence of type on the eating quality of grilled lamb loin.

Values are the means derived from analysis of variance with Type and Assessor as factors

with 28 replications.

8 point category scale used **All Farms Type** Male Female **Probability** lsd Castrate sig **Attributes** Fat ! Lamb odour 4.47 4.56 4.54 0.44 0.6431 ns 2.14^{a} 2.07^{a} 1.88^{b} Abnormal odour 3.89 0.0207 0.19 Lean 5.16^{b} **Texture** 4.78^{c} 5.56^{a} 23.17 < 0.0001 0.23 Juiciness 4.99 5.07 4.92 1.71 0.1808 ns ! Lamb Flavour 4.47 4.53 4.38 1.22 0.2967 ns Abnormal Flavour 3.29^b 3.20^{b} 3.61^{a} 6.08 0.0024 0.24 Hedonic Flavour liking 4.35^b 4.64^a 4.22^{b} 7.81 0.0004 0.21 4.15^{b} 4.22^{b} 4.60^{a} Overall liking 9.68 < 0.0001 0.22

vr variance ratio, * significant at 5 %, ** significant at 1 %, *** significant at 0.1 %! least significance test post hoc not computed

Comparison of females, across farms, Table 14.

All farms supplied female lambs and using the balanced panels it was possible to compare lambs across farms. Farm 5 results are based on 4 female lambs.

There was no significant difference in lamb odour or abnormal odour of the fat. Lambs from farm 6 were significantly (p<0.001) less tender than lambs produced on other farms. There were no significant difference in tenderness for lambs reared on farms 1, 2, 3, 4, and 5.

In terms of juiciness farm1 lambs were significantly (p<0.05) juicer than lambs from other farms.

There were no significant differences in lamb flavour or abnormal flavour.

There were no significant differences in flavour liking between farms.

Lambs from farm 3 were significantly (p<0.05) preferred over farms 2, 5 & 6 but did not differ from farms 1 and 4. The least liked was from farm 6 but lambs from this farm were not significantly different from lambs reared on farms 1, 2, & 5.

Table 14. Comparison of the eating quality of grilled lamb loin from female lambs across farms Values are the means derived from analysis of variance with Farm and Assessor as factors with 5 replications. 8 point category scale used

A 44	FARM 1	FARM 2	FARM 3	FARM 4	FARM 5	FARM 6	vr	Probability	sig	lsd
Attributes Fat Lamb odour	5.04	4.66	4.54	4.38	4.68	4.12	2.36	0.073	ns	!
Abnormal odour	1.86	2.36	2.16	1.98	1.85	2.10	2.40	0.068	ns	!
Lean Texture	6.16 ^a	5.62 ^a	6.16 ^a	5.68 ^a	5.83 ^a	4.26 ^b	6.15	<.001	***	0.89
Juiciness	5.60 ^a	4.98 ^b	5.06 ^b	5.04 ^b	4.93 ^b	4.80^{b}	3.47	0.018	*	0.47
Lamb Flavour	4.56	4.48	4.72	4.68	4.38	4.38	0.95	0.470	ns	!
Abnormal Flavour	3.46	3.54	2.48	3.10	3.53	3.02	2.41	0.067	ns	!
Hedonic Flavour liking	4.58	4.44	5.24	4.88	4.48	4.36	2.59	0.053	ns	!
Overall liking	4.70 ^{abc}	4.44 ^{bc}	5.32 ^a	4.88 ^{ab}	4.45 ^{bc}	4.04 ^c	3.76	0.012	*	0.71

vr variance ratio significant at 5 %

^{**} significant at 1 %

*** significant at 0.1 %

[!] least significance test post hoc not computed

Conclusion

In these trials the major differences are related to different degrees of tenderness. The majority of grilled lamb loin chops were considered tender. Five of the six groups of panels were very consistent in rating lamb from female animals as being more tender than either males or castrates. Four of the groups of panels rated lamb from males as less tender, 1 group of males from farm 4 were rated as more tender than other lambs. The pooled data for tenderness showed that female lambs were more tender than castrates which in turn were more tender than males, however all the mean values were within 2 categories of tenderness.

Only one group of lambs from farm 1 were considered more juicy than castrates and males. The pooled data did not reveal differences in juiciness between sex types

There were few differences in the odour of the fat, only in one group of lambs were there significant differences and this favoured the castrates which had less abnormal odour than either females or males although the absolute values were in the categories "very weak to moderately weak"

There were no differences in lamb flavour across the groups although in two groups abnormal flavour where lambs male and castrate lambs from farms 3 & 6 respectively had higher abnormal flavour than female lambs from farm 3. Similarly abnormal flavour was higher castrates from farm 5 whilst males and females from farm 4 did not differ significantly.

The hedonic data for flavour liking and overall liking showed that meat from female lambs was preferred over that of male and castrate lambs. There was no significant difference between male and castrate lambs in flavour liking or overall liking.

Appendix 1. The effect of sex category on the eating quality of lamb loin chops

Farm & lamb details

Lamb mix	Lambing period	Feeding regime during finishing	When castrated	Male & females together or separate	Farm Code Allocated by Bristol.
10 male & 5 female	mid March – mid April	Finished inside on a super intensive lamb concentrate and silage bedded on straw	N/A	Housed in separate pens	Farm 1.
10 castrated & 5 female	End of March – early April	Outside grazing supplemented with Wynnstay's lambmaster creep feed	Early August	Castrates & females together	Farm 2.
10 male & 5 female	End of April/ early May	Outside grazing, supplemented with HJ Lea Oakes 'Bwyd y Buarth' concentrate	N/A	Grazing separate fields	Farm 3
10 male & 5 female	20 th March – 15 th April	Finished outside on pasture only	N/A	Grazing separate fields	Farm 4
10 castrated & 5 female	Early – mid April	Finished inside on a rolled wheat & beet pulp mix and bedded on straw	Early August	Castrated & females housed together	Farm 5
9 castrated & 5 female	March	Finished indoors and fed Wynnstay lambmaster and hay.	Castrated with rubber ring at less than 7 days old	Castrated & females housed together	Farm 6

Appendix 2. Taste-panel allocation of lamb samples.

Farm		F		Ram		Castrates	Farmer									
1		5		10			D Jones									
2		5				10	Jukes									
3		5		10			Williams									
4		5		10			O Jones									
5		4				11	Price									
6		6				9	Breese									
Panel struc	ture															
Panels		Males		Females		Castrates	Panels		Male	es		Fem	ales		Cas	strates
1	F1M	R3L 12508	F1F	R3L 12502	F2C	R3L 12551	16	F3M	02	12521	F3F	O3F	1 12518	F6C	02	12582
2	F1M	R3H 12506	F1F	R3H 12503	F2C	R3L 12552	2 17	F3M	02	12524	F3F	R3L	12516	F6C	R3L	12590
3	F1M	R3H 12509	F1F	R3H 12505	F2C	R3L 12553	3 18	F3M	R3L	12523	F3F	R3L	12517	F6C	R3H	12588
4	F1M	R3H 12511	F1F	R4L 12501	F2C	R4L 12555	5 19	F3M	R3L	12528	F3F	R3F	12519	F6C	R4L	12584
5	F1M	R3L 12512	F1F	R4H 12504	F2C	R4L 12560	20	F3M	R3H	12522	F3F	R4F	l 12520	F6F	R3H	12580
6	F1M	U3L 12507	F2F	U3H 12546	F2C	R2 1255	8 21	F4M	02	12536	F4F	02	12533	F5C	02	12566
7	F1M	O3L 12513	F2F	U3H 12547	F2C	R3L 1255	6 22	F4M	02	12541	F4F	02	12534	F5C	R2	12564
8	F1M	R3L 12510	F2F	U3H 12548	F2C	R3L 1255	9 23	F4M	03L	12537	F4F	03L	12532	F5C	R3L	12567
9	F1M	R3L 12514	F2F	U3H 12549	F2C	R3H 1255	7 24	F4M	03L	12543	F4F	03L	12535	F5C	R3L	12568
10	F1M	R3L 12515	F2F	U3H 12550	F2C	U4H 1255	4 25	F4M	03L	12542	F4F	R3L	12531	F5C	R3H	12570
11	F3M	O2 12525	F5F	R3H 12561	F5C	R3H 1256	9 26	F4M	P+1	12538	F6F	R2	12576	F6C	R3L	12583
12	F3M	O2 12526	F5F	R3L 12563	F5C	R3L 1257	1 27	F4M	P+2	12539	F6F	R2	12578	F6C	R3L	12585
13	F3M	02 12527	F5F	R2 12565	F5C	R2 1257	2 28	F4M	P+2	12540	F6F	R3L	12577	F6C	R3L	12586
14	F3M	O2 12529	F5F	U2 12574	F5C	R2 1257	5 29	F4M	P+2	12545	F6F	R3L	12579	F6C	R3L	12587
15	F3M	O2 12530	F5C	R3H 12573	F5C	U3L 1256	2 30	F4M	O3L	12544	F6F	R3L	12581	F6C	R3L	12589

Key:- F followed by number = Farm, last digit, M, F or C =sex type

Panels 15 and 20 contained just 2 sex types

Appendix 3. Eight point category scales used in the assessment of lamb. Numerical values are added subsequently.

Lamb Odour of fat / Abnormal odour intensity

- 8. Extremely strong
- 7 Very strong
- 6 Moderately strong
- 5 Slightly strong
- 4 Slightly weak
- 3 Moderately weak
- 2 Very weak
- 1 Extremely weak

Texture / Juiciness

Lamb flavour intensity / Abnormal flavour intensity

8 Extremely tender/juicy

7 Very tender/juicy

6 Moderately tender/juicy

5 Slightly tender/juicy

4 Slight tough/ dry

3 Moderately tough/ dry

2 Very tough/dry

1 Extremely tough/dry

Extremely strong

Very strong

Moderately strong

Slightly strong

Slightly weak

Moderately weak

Very weak

Extremely weak

Hedonic

Flavour/ Overall liking

- 8 Like extremely
- 7 Like very much
- 6 Like moderately
- 5 Like slightly
- 4 Dislike slightly
- 3 Dislike moderately
- 2 Dislike very much
- 1 Dislike extremely

Appendix 4. Individual panel means for each lamb for each sensory attribute

Rep	Farm	Sex	Number	Lamb odour fat	Abnormal odour fat	Texture lean	Juiciness	Lamb flavour	Abnormal flavour	Flavour liking	Overall liking
1 l	1	Male	12508	4.9	2.9	6.5	5.6	4.7	3.9	4.2	4.3
2	1	Male	12506	5.3	1.7	4.4	4.8	4.7	3.1		
3	1	Male	12509	5.2	1.7	4.4	5.2	4.0	3.4	4.5 3.8	4.2 3.8
3 4	1	Male	12511	4.5	1.8	5.5	3.2 4.7	4.0	3.4	3.8 4.9	5.0
5	1	Male	12511	4.3	1.7	5.4	5.3	4.4	3.8	3.8	3.9
6	1	Male	12512	4.7	3.0	3.4	4.0	4.5	3.8	3.4	3.3
7	1	Male	12513	4.3	2.2	4.0	4.8	4.3	3.2	3.4	3.4
8	1	Male	12513	3.5	2.9	3.6	4.5	4.1	3.7	4.2	3.6
9	1	Male	12514	3.5 4.6	2.1	4.2	5.4	4.7	2.5	4.2	4.5
10	1	Male	12514	4.4	1.9	6.0	5.6	4.7	3.6	4.6	4.8
10	3	Male	12525	4.4	2.1	4.0	4.5	4.9	3.3	4.0	3.9
12	3	Male	12526	4.6	2.2	5.1	4.9	4.1	4.0	4.2	4.2
13	3	Male	12527	5.1	1.8	3.6	4.9	3.7	3.9	3.4	3.1
14	3	Male	12529	5.2	1.6	4.4	4.8	4.3	3.1	4.4	4.1
15	3	Male	12530	4.5	2.3	5.5	5.1	4.0	2.6	4.1	4.4
16	3	Male	12521	4.6	2.5	5.6	4.3	4.1	2.6	4.8	4.8
17	3	Male	12524	4.0	2.5	5.7	4.9	4.1	3.4	4.4	4.7
18	3	Male	12523	4.4	2.2	4.2	5.2	4.4	3.5	4.4	4.7
19	3	Male	12528	4.2	2.3	4.0	4.9	3.9	4.7	3.7	3.4
20	3	Male	12522	3.6	2.5	4.7	4.5	4.9	2.6	4.7	4.6
21	4	Male	12536	4.4	2.3	5.2	5.1	5.0	2.7	4.7	4.8
22	4	Male	12541	4.7	1.5	5.9	5.8	4.8	3.1	5.3	5.3
23	4	Male	12537	4.5	1.7	5.6	5.1	4.9	2.7	5.0	4.9
24	4	Male	12543	4.0	2.6	5.0	5.3	4.5	3.0	4.4	4.4
25	4	Male	12542	3.9	1.7	3.6	4.8	4.7	3.3	4.1	3.7
26	4	Male	12538	4.5	1.8	4.2	4.6	4.9	2.5	4.7	4.3
27	4	Male	12539	3.9	2.4	5.9	5.5	4.5	3.3	4.7	4.8
28	4	Male	12540	4.3	2.4	4.4	4.9	4.8	2.9	4.3	4.1
29	4	Male	12545	4.2	2.2	4.9	5.0	5.0	2.7	5.0	4.7
30	4	Male	12544	4.4	2.3	5.0	5.4	4.5	3.5	4.2	4.1
1	1	Female	12502	5.6	1.5	6.6	4.9	4.7	3.0	5.1	5.4
2	1	Female	12503	5.1	2.3	5.5	5.5	4.9	3.3	4.6	4.6
3	1	Female	12505	4.5	1.7	6.5	5.8	4.1	4.0	4.3	4.5
4	1	Female	12501	4.8	2.1	5.5	5.8	4.6	3.1	4.9	4.7
5	1	Female	12504	5.2	1.7	6.7	6.0	4.5	3.9	4.0	4.3
6	2	Female	12546	5.3	2.1	5.1	4.7	4.6	3.4	4.7	4.6
7	2	Female	12547	3.9	2.7	5.4	5.0	4.8	2.7	4.6	4.7

8	2	Female	12548	4.8	2.6	6.1	5.5	4.9	3.2	4.9	4.9	
9	2	Female	12549	4.8	2.3	5.6	4.5	4.4	3.4	4.6	4.5	
10	2	Female	12550	4.5	2.1	5.9	5.2	3.7	5.0	3.4	3.5	
11	5	Female	12561	4.6	2.0	6.8	5.1	4.6	2.9	4.9	5.1	
12	5	Female	12563	4.9	1.8	5.3	4.8	4.5	3.0	4.7	4.6	
13	5	Female	12565	4.4	1.6	5.2	4.8	4.0	4.1	4.1	3.9	
14	5	Female	12574	4.8	2.0	6.0	5.0	4.4	4.1	4.2	4.2	
15	5	Castrate	12573	4.6	2.0	5.8	5.4	4.8	3.6	4.3	4.3	
16	3	Female	12518	4.5	2.2	6.1	5.0	5.1	2.2	5.7	5.6	
17	3	Female	12516	5.5	2.0	5.9	5.7	5.0	2.1	5.8	5.9	
18	3	Female	12517	3.9	2.3	5.8	4.6	4.6	2.7	4.4	4.4	
19	3	Female	12519	4.1	2.6	6.1	4.8	4.1	3.0	4.8	4.9	
20	3	Female	12520	4.7	1.7	6.9	5.2	4.8	2.4	5.5	5.8	
21	4	Female	12533	4.5	1.9	5.3	5.2	4.9	2.6	5.2	4.9	
22	4	Female	12534	4.7	1.5	6.5	5.0	4.7	3.4	4.8	5.0	
23	4	Female	12532	4.2	2.1	5.1	5.3	4.2	3.6	4.9	4.9	
24	4	Female	12535	4.3	2.1	6.1	4.9	4.8	3.0	4.8	4.9	
25	4	Female	12531	4.2	2.3	5.4	4.8	4.8	2.9	4.7	4.7	
26	6	Female	12576	4.0	2.2	4.7	5.1	4.3	2.7	4.7	4.4	
27	6	Female	12578	3.4	1.9	3.0	4.8	4.2	2.9	4.3	3.5	
28	6	Female	12577	4.7	2.2	3.6	4.7	4.5	2.8	4.2	3.6	
29	6	Female	12579	4.5	2.2	5.1	4.5	4.6	2.6	4.8	4.9	
30	6	Female	12581	4.0	2.0	4.9	4.9	4.3	4.1	3.8	3.8	
1	2	Castrate	12551	5.4	1.8	5.3	5.1	4.8	4.0	4.3	4.2	
2	2	Castrate	12552	4.5	2.1	4.6	5.3	5.0	3.1	4.6	4.6	
3	2	Castrate	12553	5.5	1.6	6.4	5.1	5.1	3.5	5.1	5.0	
4	2	Castrate	12555	4.6	2.3	5.6	5.0	4.5	4.0	3.9	3.9	
5	2	Castrate	12560	4.6	1.8	5.9	5.4	4.3	2.9	4.7	4.7	
6	2	Castrate	12558	4.7	1.5	4.4	4.8	4.9	3.3	4.6	4.2	
7	2	Castrate	12556	4.5	2.1	6.3	5.1	4.3	4.8	3.5	3.6	
8	2	Castrate	12559	4.7	1.5	3.6	4.8	4.2	4.1	3.7	3.4	
9	2	Castrate	12557	4.3	2.5	5.6	5.3	4.6	2.7	5.5	5.5	
10	2	Castrate	12554	5.1	1.4	5.3	5.0	4.9	3.4	4.8	4.5	
11	5	Castrate	12569	4.9	1.7	6.3	5.3	4.2	3.8	4.3	4.4	
12	5	Castrate	12571	4.6	1.7	4.9	4.5	3.2	4.6	3.9	3.8	
13	5	Castrate	12572	4.7	1.8	3.6	4.4	4.2	2.8	4.0	3.5	
14	5	Castrate	12575	4.6	1.6	5.1	4.3	4.2	3.9	4.0	4.1	
15	5	Castrate	12562	4.4	2.7	6.5	5.4	4.5	4.0	4.2	4.3	
16	6	Castrate	12582	4.5	2.3	5.1	4.8	3.8	3.4	4.1	4.0	
17	6	Castrate	12590	4.5	1.8	6.8	5.1	4.5	2.6	4.9	5.1	

18	6	Castrate	12588	4.3	2.4	6.2	4.5	4.7	3.5	4.6	4.6
19	6	Castrate	12584	4.1	2.3	4.2	5.1	3.9	4.6	3.4	3.2
20	6	Female	12580	3.7	2.7	6.3	5.5	4.5	2.8	5.2	5.2
21	5	Castrate	12566	4.8	1.6	5.4	4.8	4.7	3.5	4.4	4.3
22	5	Castrate	12564	4.4	1.7	4.4	4.6	3.8	5.0	2.8	2.9
23	5	Castrate	12567	3.7	2.0	6.5	5.0	4.0	4.6	3.8	3.9
24	5	Castrate	12568	4.5	1.5	5.2	5.0	4.5	2.7	4.4	4.4
25	5	Castrate	12570	4.0	2.3	6.3	5.3	4.6	4.5	3.6	3.7
26	6	Castrate	12583	5.0	1.6	4.9	4.9	4.6	2.7	4.8	4.8
27	6	Castrate	12585	3.7	2.2	4.4	5.2	3.8	4.0	3.7	3.7
28	6	Castrate	12586	4.6	2.4	2.9	4.3	4.0	3.1	3.5	3.3
29	6	Castrate	12587	4.0	1.5	4.8	5.1	4.8	2.5	4.9	4.6
30	6	Castrate	12589	4.4	1.5	4.5	4.7	4.6	3.5	4.5	4.4